
SE Assignment II
1. What is the difference between functional and non-functional requirements? Give

one example for each type of requirement for a bank ATM software.

Functional requirements define a function of a system or its component. Function
is described as a set of inputs, behaviors and outputs.

Functional requirements may be calculations, technical details, data manipulation
and processing and other specific functionality that define what a system is
supposed to accomplish.

Non functional requirements are non negotiable obligations that must be
supported by the software.

Non functional requirements are in the form "System shall be <requirement>", an
overall property of the system as a whole and not a specific function.

For a bank ATM software, withdrawal of cash is a functional requirement; sub-
requirements may include an option to select amount of cash, account type, and a
module to perform the transaction.

And overall interfacing is a non functional requirement; sub requirements may
include interfacing of display, input and in-process views.

2.
A. What do you understand by requirements gathering? Explain different

requirement gathering techniques.

Requirements gathering is a process of collecting all the necessary information
about the project from all of the clients and their documents and notes.

Different requirements gathering techniques include:

• Studying existing documentation — You get a butt load lot of information from
the documentation itself, provided it exists, cause the client is not all times able
to explain shit properly.

• Interviews — Interviews with the clients may provide you with extra information
that is missing from the PRDs.

• Task analysis — Analysis of the tasks and breaking them down into various sub-
tasks.

• Scenario analysis — Details of each requirements are gathered from various
users under multiple scenarios.

• Form analysis — Analyzing the format of the product can be used to identify the
various components of the input and output modules.

B. List the characteristics of a good software design.

Characteristics of a good software design include:

• Accurate — A good software should implement all the requirements accurately.

• Comprehensible — A good software should be easy to grasp by all sorts of dumb
users.

• Efficient — A good software design should be efficient in doing what it’s
supposed to; it should not lag or provide time consuming solutions.

• Maintainable — A good software should be easily modifiable by future
developers, as requirements change overtime.

3.
A. How are the abstraction and decomposition principles used in development of

good SRS?

The principle of Abstraction means that an existing problem can be simplified by
omitting all the irrelevant details of the project in the SRS document.

By showing only the important details about the project like "how it will look"
instead of the "internal functionality to implement it" in the SRS document, it
becomes comprehensible to a wider range of clients, including the ones in non-
technical streams, as it appeals to users and not developers.

Decomposition means breakdown of a large module into various smaller modules.

By breaking down a large problem statement into separate smaller statements, we
can explain the modules in a more easily to the clients, and reducing the cluttering
in the SRS document.

B. What do you mean by terms cohesion and coupling in the context of software
design?

Cohesion is the measure of the functional strength of a module.

Good decomposition is indicated by high cohesion rate; a good cohesion is the one
where the individual modules co-operate with each other performing a single
objective.

Coupling between two modules is the measure of degree of interaction
(interdependence) between the two modules.

Good coupling is sharing of resources between the modules; for example if a
function call requires passing large amounts of data between two modules, the
modules are tightly coupled.

4. What do you understand by the problems of over specification, forward reference,
noise in SRS document. Explain each of these with suitable examples.

Over specification

It occurs when the analyst tries to address the "how to" aspects in the SRS
document. It limits the imagination of the developers/designers to come up
with a a good solution.

For example, in a movie database application, you don’t need to specify how
the movies are stored in the database, and which algorithm you’re using to
fetch them.

Forward references

It happens when the analyst refers to the aspects which are discussed
much later in the SRS, this causes readability issues in the document.

Noise

Noise refers to the presence of material not directly relevant to the software
development process. It is hardly of any use to the software developers and
would unnecessarily clutter the SRS document, diverting the attention from
the crucial points.

For example, In the register customer function, information like, who mans
the customer registration department and at what time do they work, etc.,
are considered as noise.

5. Explain the main differences between architectural design, high level design, and
detailed design of a software system.

Architectural Design is the process of defining a collection of hardware and
software components and their interfaces to establish the framework for the
development of a computer system.

High Level Design (Preliminary) is the process of analyzing design alternatives and
defining the architecture, components, interfaces, and timing/sizing estimates for a
system or components. The outcome of the high-level design is called the program
structure of the software architecture.

Detailed Design is the process of refining and expanding the preliminary design of
a system or component to the extent that the design is sufficiently complete to
begin implementation. The outcome of the detailed design stage is usually
documented in the form of a module specification (MSPEC) document.

