PCAP Assignment IV

A. Write an OpenCL kernel code which converts input matrix A into output matrix B as
follows: consider elements of matrix A into 4 equal parts. First part elements should
be incremented by 1, Second part elements should be incremented by 2, Third part
elements should be incremented by 3 and last part elements should be incremented
by 4. Write the kernel code which does this in parallel for all the elements. Example,
N=4

3 8 2 5 4 9 4 7
2 3 5 6 3 4 7 8
2 4 3 1 5 7 7 5
3 2 1 5 6 5 5 9

__kernel void operate (__global int %A, __global int *B, int count) {
int i = get_global_id(0);
int j = get_global_id(1);
// 'd' is the increment value
int d =1 + (i >= count/2) * 2 + (j >= count/2);
B[i x count + j] = A[i % count + j] + d;

B. Write OpenCL kernel code to calculate the value of M.

__kernel void advance (__global float =xoutput, const unsigned int
count) {
int n_rects = get_global_id(0);
float rect_width = 1.0 / n_rects;
float rect_left = 0.0;
float rect_height_squared;
float rect_height;
float agg_area = 0.0;
float pi;
int 1i;
if (n_rects < count) {
for (i = 0; i < n_rects; i++) {
rect_left += rect _width;
rect_height_squared = 1 - rect_left x rect_left;
if (rect_height_squared < 0.00001) {
rect_height_squared = 0;
b
rect_height = sqrt(rect_height_squared);
agg_area += rect_width *x rect_height;
}
pi = 4 *x agg_area;
output[n_rects] = pi;

A. Write a parallel program in CUDA to multiply two Matrices A and B of dimensions
MxN and NxP resulting in Matrix C of dimension MxP. Create P number of threads,
and each column of the resultant matrix is to be computed by one thread. Use 1D
Block.

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>

_global__ void matrix_mult (int *c, int =a, int *b, int ha, int wa) {
int j = threadIdx.x;
int wc = blockDim.Xx;
int i, k;
for (i = 0; 1 < ha; i++) {
for (k = 0; k < wa; k++) {
clixwc + j] += alixwa + k] * blkkwc + jI;

int main () {
int ha = 2; int wa = 3; int hb = 3; int wb = 2; // Shhhh, it’s okay
int hc = ha;
int wc = wb;

int al6] = {1, 2, 5, 3, 4, 6 };

int b[6] = { 7, 10, 8, 11, 9, 12 };
int c[4] ={ 0 };
int size_a = ha *x wa, size_b = hb *x wb, size_c = hc * wc;

// Print A, B

int *dev_a, *dev_b, s*xdev_c = NULL;
cudaMalloc((voidxx)&dev_a, size_a * sizeof(int));
cudaMalloc((voidxx)&dev_b, size b * sizeof(int));

cudaMalloc((voidxx)&dev_c, size_c * sizeof(int));

cudaMemcpy(dev_a, a, size_a * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size_b * sizeof(int), cudaMemcpyHostToDevice);

dim3 threadsPerBlock(wc,1);//just for the sake of 2D-Blocks;
matrixMult <<<1, threadsPerBlock >>>(dev_c, dev_a, dev_b, ha, wa);

cudaMemcpy(c, dev_c, size_c * sizeof(int), cudaMemcpyDeviceToHost);
// Print C

return 0;

Thanks Jawahar for CUDAIng

B. Compare Superscalar, VLIW and Hardware Multithreading.
Superscalar

In these designs, the CPU maintains dependence information between instructions in the
instruction stream and schedules work onto unused functional units when possible.

The major advantage of out-of-order logic lies with the software developer. By extracting
parallelism from the programmer's code automatically within the hardware, serial code
performs faster without any extra developer effort.

Out-of-order scheduling logic requires a substantial area of the CPU die to maintain
dependence information and queues of instructions to deal with dynamic schedules
throughout the hardware.

VLIW

VLIW is a heavily compiler-dependent method for increasing instruction-level parallelism
in a processor. Rather than depending entirely on complex out-of-order control logic that
maintains dependences in hardware, as we saw when discussing superscalar execution,
VLIW moves this dependence analysis work into the compiler.

Instead of providing a scalar instruction stream, each issued instruction in a VLIW
processor is a long instruction word comprising multiple instructions intended to be
issued in parallel. This instruction will be mapped directly to the execution pipelines of the
processor.

Hardware Multithreading

The third common form of parallelism after instruction and data is thread parallelism, or
the execution of multiple independent instruction streams, extracting independent
instructions from an instruction stream is difficult, in terms of both hardware and compiler
work, and it is sometimes impossible. Extracting such instruction parallelism from two
independent threads is trivial because those threads already guarantee independence.

There are two main ways to apply on-chip multithreading: Simultaneous multithreading
and Temporal multithreading

A. Write an OpenCL Kernel code to perform odd-even transposition sorting in parallel.
What is grid?

__kernel void even (__global int xa) {
int idx = get_global_id(0);
int size = get_global_size(0);
int temp;
if ((idx % 2 == 0) && ((idx + 1) < size)) {
if (alidx] > alidx+1]) {
temp = alidx];
alidx] = alidx+1];
alidx+1] = temp;

__kernel void odd (__global int *a) {
int idx = get_global_id(0);
int size = get_global_size(0);
int temp;
if ((idx % 2 !'= 0) && ((idx + 1) < size)) {
if(alidx] > alidx+1]) {
temp = alidx];
alidx] = alidx+1];
alidx+1] = temp;

In OpenCL execution model, the kernel instances execute concurrently over a virtual
grid defined by the host code.

B. How many grids will be created for odd-even transposition sorting and merge
sorting.

0Odd Even Transposition: 2 x elements/2 = elements

Merge Sort: Log N

4.
A. Write an OpenCL Kernel code to perform merge sort in parallel.

void __kernel CompareExchange (__global intx A,int pass,__global intx t) {

int idx = get_global_id(0);
int size = get_global_size(0);
int i = idx * 2 * pass;

int j = idx * 2 * pass + pass;
int flag = @0, flag2 = pass;

for (int k = 0; k <= pass; k += 1) {
int temp2 = Al[i+k];
flag = 0;

for (int z = 0; z < pass; z += 1) {
int temp3 = Al[j+z];

if (A[i+k] >= A[j+z]) {
int temp = A[i+k];
Ali+k] = A[j+z];
Alj+z] = temp;
flag++;
k++;

if (Ali+k] < Alj+z]) {
flag++;
kK++;

while (flag > 0) {
k=3
flag—;

B. What is data parallelism? Explain With the help of suitable example.

Data parallelism is a form of parallelization across multiple processors in parallel
computing environments. It focuses on distributing the data across different nodes,
which operate on the data in parallel. It can be applied on regular data structures like
arrays and matrices by working on each element in parallel.

Let us assume we want to sum all the elements of the given array and the time for a
single addition operation is Ta time units.

In the case of sequential execution, the time taken by the process will be n*Ta time
units as it sums up all the elements of an array.

On the other hand, if we execute this job as a data parallel job on 4 processors the
time taken would reduce to (n/4)*Ta + Merging overhead time units.

Parallel execution results in a speedup of 4 over sequential execution.

/N
\

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing

A. Write a parallel program in CUDA to add two Matrices A and B of dimensions MxN
resulting in Matrix C of dimension MxN. Create N number of threads, and each
column of the resultant matrix is to be computed by one thread. Handle errors.

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <stdlib.h>

__global__ void matrixAdd(int *c, int *a, int xb, int M) {
int j = threadIdx.x;
int k = blockDim.Xx;
int 1i;

for (i = 0; i < M; i++)
clixk + j1 = alixk + j] + b[ixk + j1;

void checkForError(cudaError_t e) {

if (e != cudaSuccess) {
printf("Error : %s\n", cudaGetErrorString(e));
getchar();
exit(1);

b

int main()

{
int M =2, N = 2;

int al4] = {1, 2, 3, 4 };
int b[4] = { 1, 2, 3, 4 };
int c[4] ={ 0 };

int xdev_a NULL, xdev_b = NULL, *dev_c = NULL;

int size = M x N;
cudaError_t e;

e = cudaMalloc((voidxk)&dev_c, size % sizeof(int));
checkForError(e);

e = cudaMalloc((void**)&dev_a, size * sizeof(int));
checkForError(e);
e = cudaMalloc((voidxx)&dev_b, size x sizeof(int));
checkForError(e);

e = cudaMemcpy(dev_a, a, size *x sizeof(int), cudaMemcpyHostToDevice);
checkForError(e);

e =

cudaMemcpy(dev_b, b, size x sizeof(int), cudaMemcpyHostToDevice);

checkForError(e);

matrixAdd <<< 1, N >>>(dev_c, dev_a, dev_b, M);

e =

cudaGetLastError();

checkForError(e);

e =

cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);

checkForError(e);

int 1i;
for (1 =0; i < size; i++) {

if (i N == 0)
printf("\n");
printf("sd ", clil);

return 0;

Compare different parallel programming models.

Shared Memory Model

In a shared-memory model, parallel processes share a global address space
that they read and write to asynchronously. Asynchronous concurrent access
can lead to race conditions and mechanisms such as locks, semaphores and
monitors can be used to avoid these.

Message Passing Model

In a message-passing model, parallel processes exchange data through
passing messages to one another. These communications can be
asynchronous, where a message can be sent before the receiver is ready, or
synchronous, where the receiver must be ready.

Implicit Interaction Model

In an implicit model, no process interaction is visible to the programmer and
instead the compiler and/or runtime is responsible for performing it. Two
examples of implicit parallelism are with domain-specific languages where the
concurrency within high-level operations is prescribed, and with functional
programming languages because the absence of side-effects allows non-
dependent functions to be executed in parallel.

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Side_effect_(computer_science)

