
OS Assignment II
1.

A. Provide two programming examples of multithreading giving improved
performance over a single-threaded solution.

The process of executing multiple threads simultaneously is known as
multithreading.

Some examples where multi threading improves performance include:

Matrix multiplication — Individual rows and columns of the matrices
can be multiplied in separate threads, reducing the wait time of the
processor for addition.

UI updates — We can render some UI elements such as a view or
images on a background thread so that the main thread does not
block the view, causing performance issues and noticeable lags.

B. Provide two programming examples of multithreading that would not improve
performance over a single-threaded solution.

If we are running a trivial program (constant time complexity) in a separate
thread, the overhead of creating the threads exceeds the tasks performed
by them, thus decreasing performance when compared to a single threaded
alternative.

Some examples include:

Trivial operations on a list of numbers — Multi threading won’t speed
up the operations since the time taken by the operations is constant,
and other elements of the list may or may not wait for the previous
to finish.

Allocating memory to a set of data variables — Allocating memory is
a very fast task, and the overhead of creating multiple threads to
process separate blocks of variables exceeds the performance gained
by multi threading.

2.
A. What resources are used when a thread is created? How do they differ from those

used when a process is created?

When a thread is created, the threads does not require any new resources
to execute the thread shares the resources like memory of the process to
which they belong to. The benefit of code sharing is that it allows an
application to have several different threads of activity all within the same
address space.

Whereas a new process creation is very heavyweight because it always
requires new address space to be created and even if they share the
memory then the inter process communication is expensive when compared
to the communication between the threads.

B. Consider a multiprocessor system and a multithreaded program written using the
many-to-many threading model. Let the number of user-level threads in the
program be more than the number of processors in the system. Discuss the
performance implications of the following scenarios:

a. The number of kernel threads allocated to the program is less than the
number of processors.

The scheduler can only schedule user level processes to the kernel
threads, and since some of the processes are not mapped to the
kernel threads, they will be idle.

b. The number of kernel threads allocated to the program is greater than the
number of processors but less than the number of user-level threads.

All of the processes will be working simultaneously assuming there are
enough user threads. If a kernel thread is blocked, it may be swapped
out for one that isn’t blocked.

3.
A. Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. In

what order should they be run to minimize average response time (of course your
answer will depend on X)

Shortest job first is a way to minimize the response time:

case (0 < X ≤ 3) — X, 3, 5, 6, 9
case (3 < X ≤ 5) — 3, X, 5, 6, 9
case (5 < X ≤ 6) — 3, 5, X, 6, 9
case (6 < X ≤ 9) — 3, 5, 6, X, 9
case (X > 9) — 3, 5, 6, 9, X

B. The exponential average formula with α = 1/2 is being used to predict run times.
The previous four runs, from oldest to most recent, are 40, 20, 40, and 15 ms.
What is the prediction of the next time? (assume the initial guess is 40 ms)

If we take all four runs in consideration (first 40); the prediction is =

½ (15 + ½ (40 + ½ (20 + ½ (40)))) = 22.5

If we take the last two (last 40) into consideration; the prediction is =

½ (15 + ½ (40)) = 17.2

4. Consider the following set of processes, with length of CPU burst given in ms.

The processes are assumed to have arrived in order P1, P2, P3, P4, and P5 all at time 0.
Which of the following algorithms: FCFS, SJF, nonpreemptive priority, and RR
(quantum = 1) results in minimum average waiting time.

Average waiting time in FCFS = 9.6ms
Average waiting time in SJF = 3.2ms
Average waiting time in Priority = 8.2ms
Average waiting time in RR = 5.4ms

Shortest Job First (SJF) results in minimum average waiting time.

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

5. Suppose that the following processes arrive for execution at the times indicated. Each
process will run the listed amount of time. In answering the questions, use
nonpreemptive scheduling and base all decisions on the information you have at the
time the decision must be made.

a. What is the average turnaround time for these processes with the FCFS scheduling
algorithm?

Average turnaround time = ((8 - 0) + (12 - 0.4) + (13 - 1.0)) / 3 = 10.53

b. What is the average turnaround time for these processes with the SJF scheduling
algorithm?

Average turnaround time = ((8 - 0) + (13 - 0.4) + (9 - 1.0)) / 3 = 9.53

Process Arrival Time Burst Time

P1 0.0 8

P2 0.4 4

P3 1.0 1

P1 P2 P3

P1 P3 P2

