
MP Assignment II
1A) What is the difference between JMP and CALL Instruction?

1B) Write an ALP to find smallest number in a given block of data using near
procedure.

data segment
 num db 12h, 14h, 03h, 69h, 42h, 22h, 19h, 20h, 24h, 04h
 siz db 0ah
 sml db ?
data ends

code segment
assume ds: data, cs: code
start: mov ax, data;
 mov ds, ax;

 lea si, num; Store address of list
 lea di, sml; Store address of destination
 mov cl, siz; Store the count

 call smallest; Call the goddamn procedure
 jmp finnish; Finnish it!

 smallest proc near

 mov al, [si]; Load into al the first element
 up:
 dec cl; Decrement cl
 jz fns; If zero, finnish procedure
 inc si; Increment si
 mov bl, [si]; Load [si] to bl
 cmp al, bl; Compare, change al if bl is less
 jng up;

 mov al, [si];
 jmp up;

JMP CALL

JMP simply 'jumps' to the label you provide it with. CALL stores the location where it will return (below
the CALL instruction) in the stack, then JMPs to
the label, and then at the RET instruction, JMPs
back to the location which was stored.

JMP changes the IP content. CALL pushes the IP content onto the stack and
updates the IP, which is reset after RET.

 fns:
 mov [di], al; Copy al to destination
 ret; Return!

 smallest endp

 finnish:
 mov ah, 4ch
 int 21h

 code ends
end start

2A) Consider the following fragment of assembly code:
Data segment
array dw 7,6,5,4
count dw 4
Data ends
Code segment
——————
xor ax,ax
stc
mov cx,count
mov si,offset array
label1: adc ax,word ptr [si]
add si,2
loop label1
label2:
———————-
———————-

What will be the value in AX when control reaches label2? Show the calculation
for all iteration for the value in AX. Write the final answer in hexadecimal.

When the control reaches label2, AX will have the value '0017h'.

2B) What is ‘REP’? Discuss the various types of REP.

REP or Repeat, repeats a string instruction the number of times specified in the count register,
CX, or until the condition of the ZF (Zero Flag) is no longer met.

Types:
REP - Repeat MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX
times.

REPE - Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1
(result is Equal), maximum CX times.

REPNE - Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0
(result is Not Equal), maximum CX times.

REPZ - Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1
(result is Zero), maximum CX times.

REPNZ - Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0
(result is Not Zero), maximum CX times.

ITERATION AX CALCULATION

1 OOO8 ADC AX, WORD PTR[SI]

AX ← AX + [SI] + 1; Carry is set before
AX ← 0000 + 0007 + 1
AX ← 0008

2 OOOE ADC AX, WORD PTR[SI]

AX ← AX + [SI] + 0; Carry was reset
AX ← 0008 + 0006
AX ← 000E

3 OO13 ADC AX, WORD PTR[SI]

AX ← AX + [SI] + 0; Carry was reset
AX ← 000E + 0005
AX ← 0013

4 OO17 ADC AX, WORD PTR[SI]

AX ← AX + [SI] + 0; Carry was reset
AX ← 0013 + 0004
AX ← 0017

3A) Write down the equivalent string instructions for the following two.

i) MOV AL, [DI]
 CMP AL, [SI]
 DEC SI
 DEC DI

STD; We’re going in reverse
CMPSB; Yep, that should do it..

ii) MOV AL, [SI]
MOV [DI], AL
INC SI

CLD; We’re going forward
MOVSB; Again, should do it..
DEC DI; Cause it’s not incremented int the problem?

3B) Using MACRO, write ALP to solve P = X2+Y2 where X and Y are 8 bit
numbers.

data segment
 xy db 32h, 49h
 p dw ?
data ends

code segment
assume ds: data, cs: code
start: mov ax, data;
 mov ds, ax;

 ; Very frakking important, macros are defined before using them

 sqc macro src, cnt, dest ; Define the macro

 push ax; ; Push regs
 push cx;

 lea si, src; ; Load address of source
 mov cl, cnt; ; Load the count

 mov dest, 0000h; ; Clear the dest

 sqcalc:
 xor ax, ax; ; Clear AX
 mov al, [si]; ; Load the numbers
 mul al; ; Multiply by self
 add dest, ax; ; Add to destination
 inc si; ; Increment and decrement
 dec cl;
 jnz sqcalc;

 pop cx; ; Pop regs
 pop ax;

 endm ; end the macro

 sqc xy, 02h, p; ; Call the goddamn macro

 mov ah, 4ch
 int 21h

 code ends
end start

4A) You are stepping through the execution of an 8086 assembly language
program. Shown are memory dump for vector table, a disassembled listing of the
part of the program that is currently executing.

DUMP OF INTERRUPT VECTOR TABLE:

0000:0000 BB 08 0B 02 65 04 70 00-16 05 DA 09 65 04 70 00e.p.....e.p.
0000:0010 65 04 70 00 D7 04 00 C0-85 98 00 F0 53 FF 00 F0 e.p.........S...
0000:0020 00 00 00 C9 28 00 DA 05-3A 00 DA 05 52 00 DA 05(...:...R...
0000:0030 6A 00 DA 05 82 00 DA 05-9A 00 DA 05 65 04 70 00 j………..e.p.

LISTING OF THE PROGRAM CODE:

1266:0033 EB02 JMP 0037
1266:0035 46 INC SI
1266:0036 47 INC DI
1266:0037 803C00 CMP BYTE PTR [SI],00
1266:003A 7505 JNZ 0041
1266:003C 803D00 CMP BYTE PTR [DI],00
1266:003F 7412 JZ 0053
1266:0041 8A04 MOV AL,[SI]

→ 1266:0043 3A05 CMP AL,[DI]
1266:0045 74EE JZ 0035
1266:0047 7305 JNB 004E
1266:0049 B8FFFF MOV AX,FFFF
1266:004C EB07 JMP 0055
1266:004E B80100 MOV AX,0001
1266:0051 EB02 JMP 0055
1266:0053 33C0 XOR AX,AX
1266:0055 C3 RET

NMI INTERRUPT SERVICE ROUTINE:

NMIISR: PUSH AX
PUSH SI
CALL HANDLENMI ;Process the NMI, doesn’t modify any
;registers or flags except AX and SI
POP SI
POP AX
IRET

The instruction shown in bold in the program listing is the current instruction
being executed. While this instruction is executing, an NMI occurs. The NMI will
be serviced before the next instruction begins executing. What is the address of
the NMI interrupt service routine? Explain.

The Interrupt Vector Table is an array of DWORD entries (each entry is 4 bytes).

The NMI Interrupt uses vector 2. The offset of entry 2 in the Interrupt Vector Table is at: 2 * 4 =
8. This entry is made up of the bytes underlined above.

Each entry in the table is a SEG:OFF pair giving the CS and IP values for the entry point of the
interrupt service routine.

DUMP OF INTERRUPT VECTOR TABLE:

0000:0000 BB 08 0B 02 65 04 70 00- 16 05 DA 09 65 04 70 00e.p.....e.p.

But since it’s a little endian scheme, the actual address = 09DA:0516

PS: The whole question is copied from
Washington State University Midterm Exam #1 Answer Key

4B) Write an assembly language program to count number of vowels in a given
string.

data segment
 string db "NOW IF YOU LOOK AT THAT, OKAY NO$"
 len db 32
 vowel db "AEIOUaeiou$"
 count db ?
data ends

code segment
assume ds: data, cs: code
start: mov ax, data;
 mov ds, ax;

 mov count, 00h; Set count to zero

 mov cl, len; Put length in cl
 dec cl; Acutal length = length - 1

http://www.eecs.wsu.edu/~ee314/exams/ex1ak.pdf

 lea si, string; Load string address
 oloop:

 lea di, vowel; Load vowel address
 mov dl, 09h; Put number of vowels to check in dl

 iloop:
 mov al, [si]; Move stuff to compare in
 mov bl, [di]; al and bl, increment count if equal
 cmp al, bl;
 jne endil;
 add count, 01h;
 endil:
 inc di;
 dec dl;
 jnz iloop;

 inc si;
 dec cl;
 jnz oloop;

 mov ah, 4ch
 int 21h

 code ends
end start

5A) Identify and explain the type of call performed by each of the following
instruction:

i) Call 1000h

Intra-segment direct call.
It’ll take call the procedure located at address 1000h.

ii) Call word ptr [100h]

Intra-segment indirect call.
It’ll dereference the word address location 100h and call it.

iii) Call dword ptr [BX+SI]

Inter-segment indirect call.
Effective calling address is taken as the content in BX and SI, then the procedure at the
address is called.

(Thanks Jitesh for the answer)

5B) List the actions taken by 8086 when responding to an interrupt request. The
interrupt vector table is always created in the first 1K area of the memory.
Justify the statement.

When an interrupt occurs, 8086 does the following:

• Pushes the flag register onto the stack.
• Pushes a far return address (segment : offset) onto the stack
• Determines the cause of the interrupt and fetches a 4 byte interrupt vector from address
0 : vector * 4

• Transfers the control to the routine specified by the interrupt vector table entry.

The 8086 can handle 256 types of INTR interrupts, each holding starting address of Interrupt
Service Procedures (ISPs) taking 4 byte space each. The starting address are stored in the first
1 KB in the memory (Address 00000H to 003FFH).

