
MP Assignment I
1. Explain the flag register associated with 8086. Assume that you have

two 8-bit binary numbers in the memory locations. Perform the
multiplication of them assuming the numbers as unsigned and signed
numbers. The products obtained in either case needed to be logically
ORed and then 2’s complement of ORed result has to be found and to
be stored in memory. Write an ALP to meet the above specification.
Show your calculation by taking suitable examples as it is done by the
processor.

The flag register in 8086 is a 16-bit register with each bit corresponding to a flip-flop. It
changes its status according to the output stored in the Accumulator (AX).

There are 9 flags active in the register, rest are undefined.

Out of the 9 active flags, 6 are conditional flags, and 3 are status flags.

Conditional Flags - Zero Flag, Carry Flag, Parity Bit Flag, Auxiliary Carry Flag, Sign
Flag, and Overflow Flag.

Control Flags - Trap Flag, Interrupt Flag, and Directional Flag.

data segment

 a db 10010101b

 b db 11010011b

 c dw ?

data ends

code segment

assume ds: data, cs: code

start: mov ax, data

 mov ds, ax

 mov al, a

 mov bl, b

 mul bl; unsigned multiplication

 mov dx, ax; store unsigned result in dx

 mov al, a

 imul bl; signed multiplication

 or ax, dx; ORing signed and unsigned result

 neg ax; 2's compliment of result

 mov c, ax; storing result in memory

 mov ah, 4ch

 int 21h

 code ends

end start

Numbers taken, a = 1001 0101, and b = 1101 0011

a * b (unsigned) = 0111 1010 1100 1111 (7ACFh) (Stored as CF 7A)

a * b (signed) = 0001 0010 1100 1111 (12CFh) (Stored as CF 12)

unsigned OR signed = 0111 1010 1100 1111 (7ACFh)

neg above result = 1000 0101 0011 0001 (8531h) (Stored as 31 85)

2. Extract the blocks of Registers, Instruction Queue and the flags from
the internal architecture of 8086. Draw them with complete details on it.
Explain the importance of them in the 8086 programming.

The 8086 has 8, 16-Bit general purpose registers (GPRs).

4 out of the 8 (AX, BX, CX, and DX) are in the data register file.

The other 4 are Pointer (SP, and BP) and Index (SI, and DI) registers.

The data registers are used for temporary storage for faster access and some special
operations.

The Pointer registers are used to point to program stack (SP) and to data in stack
segment (BP).

The Index registers are used to hold the index of memory locations SI for source and DI
for data in indexed, base indexed, indirect addressing and some string operations.

There are 4 segment registers (Code, Data, Stack, and Extra) that point to the
respective segments in the memory.

There is also a special register IP (Instruction Pointer) that points to the next instruction
to be executed.

The instruction queue of 8086 is a
set of six 8-Bit registers that contain
address of the next instruction(s) to
be fetched. The execution unit
directly fetches the instructions from
the instruction queue, speeding up
the execution.

The flag register in 8086 is a 16-bit register with each bit corresponding to a flip-flop. It
changes its status according to the output stored in the Accumulator (AX).

There are 9 flags active in the register, rest are undefined.

Out of the 9 active flags, 6 are conditional flags, and 3 are status flags.

Conditional Flags - Zero Flag (ZF), Carry Flag (CF), Parity Bit Flag (PF), Auxiliary Carry
Flag (AF), Sign Flag (SF), and Overflow Flag (OF).

Control Flags - Trap Flag (TF), Interrupt Flag (IF), and Directional Flag (DF).

3. Discuss all the instructions associated with flags of 8086. It is required
to perform a division of signed 32-bit number by a signed byte. Write an
ALP to meet the above division. Also write the input and the expected
output how it appears in memory location according to your program.

CLC - Clears carry flag. (CF ← 0)

STC - Sets carry flag. (CF ← 1)

CMC - Compliments carry flag. (CF ← ~CF)

CLD - Clears directional flag. (DF ← 0)

STD - Sets directional flag. (DF ← 1)

CLI - Clears interrupt flag. (IF ← 0)

STI - Sets interrupt flag. (IF ← 1)

data segment

 a0 dw ?; lower word of number

 a1 dw ?; higher word of number

 b db ?; byte

 quo dw ?

 rem dw ?

data ends

code segment

assume ds: data, cs: code

start: mov ax, data

 mov ds, ax

 mov ax, 0000h; clear ax

 mov al, b; move the byte to al

 cbw; convert byte to word

 mov bx, ax; copy newly formed word to bx

 mov ax, a0; copy the lower word of dividend to ax

 mov dx, a1; copy the higher word of dividend to dx

 xor dx, dx; prevents overflow (maybe?)

 idiv bx; signed divide dx:ax by bx;

 mov quo, ax; copy quotient to quo

 mov rem, dx; copy remainder to rem

 mov ah, 4ch

 int 21h

 code ends

end start

For example, let 'a1:a0' be 00023FC9h and 'b' be 69h.

Dividing '00023FC9h' by '0069h',

Quotient (AX) = 057Bh

Remainder (DX) = 0056h

4. Assume that you have read two single digit BCD numbers through the
K/B and these numbers are stored in memory. Write an ALP to add and
subtract these values without modifying the numbers and keep the
result in unpacked BCD format (use appropriate instructions). Give an
example for each at the end of the program. Also write the input and the
expected output how it appears in memory location according to your
program.

data segment

 a db ?

 b db ?

 sum dw ?

 dif dw ?

 input1 db " Enter bcd number 1: $"

 input2 db " Enter bcd number 2: $"

data ends

code segment

assume ds: data, cs: code

start: mov ax, data

 mov ds, ax

 lea dx, input1;

 mov ah, 09h;

 int 21h; Print message for input 1

 mov ah, 01h;

 int 21h; Take input 1

 sub al, 30h; Convert ASCII to number

 mov a, al; Move to memory

 lea dx, input2;

 mov ah, 09h;

 int 21h; Print message for input 2

 mov ah, 01h;

 int 21h; Take input 2

 sub al, 30h; Convert ASCII to number

 mov b, al; Move to memory

 mov ax, 0000h; Clear ax

 mov al, a;

 add al, b;

 aaa; ASCII adjust after addition

 mov sum, ax; Move the sum to memory

 mov ax, 0000h; Clear ax again...

 mov al, a;

 sub al, b;

 aas; ASCII adjust after subtraction

 mov dif, ax; Move the difference to memory

 mov ah, 4ch

 int 21h

 code ends

end start

Enter bcd for number 1: 9 Enter bcd for number 2: 7

Dump

ds: 0000 09 07 06 01 02 00 00 00

 a b sum dif

5. Explain the importance of Instruction Queue in 8086. Write an ALP to
have a 16-bit number (given as 81D2H) in the memory location. This
given number is the result of summation of two BCD numbers. With
appropriate instructions in your program convert it to BCD and store
the result in memory. Assume that AF got set and CF was reset while
addition. Show your calculation as it is done by the processor.

The instruction queue of 8086 is a set of
six 8-Bit registers that contain address of
the next instruction(s) to be fetched. The
execution unit directly fetches the
instructions from the instruction queue,
speeding up the execution.

(Come on, this again!)

data segment

 n dw 081D2h

 a dw ?

data ends

code segment

assume ds: data, cs: code

start: mov ax, data

 mov ds, ax

 mov ax, n; Move the number to ax

 add al, 00h; add zero to al

 daa; decimal adjust al

 adc ah, 00h; add zero with carry to ah

 mov a, ax; store result in memory

 mov ah, 4ch

 int 21h

 code ends

end start

Dump: ds: 0000 D2 81 38 82 00 00 00 00

 8 1 D 2

 + 0 6 H (daa | Since aux carry flag is set)

 8 1 3 8

+ 0 1 H (adc | Since carry flag is now set)

 8 2 3 8 (Result)

